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Abstract

This study is an extension of the {1,2}-order plate theory to a higher order {3,2} theory. Based on the equivalent
single-layer assumptions, the in-plane and transverse displacement components are expressed as cubic and quadratic
expansions through the thickness of the sandwich construction. Also, the transverse stress component is assumed to
vary as a cubic function through the thickness. Utilizing Reissner’s definitions for kinematics of thick plates, the dis-
placement components at any point on the plate are approximated in terms of weighted-average quantities (dis-
placements and rotations) that are functions of the in-plane coordinates. The undetermined coefficients defining the
in-plane and transverse displacement fields are then expressed in terms of the weighted-average displacements and
rotations and their derivatives by directly employing Reissner’s definitions and enforcing the zero transverse-shear-
stress conditions on the upper and lower surfaces of the sandwich panel. The coefficients defining the transverse stress
component are obtained by requiring the transverse strain component, which is expressed in terms of the unknown
coefficients of the transverse stress component from a mixed constitutive relation, to be the least-squares equivalent of
the kinematic definition of the transverse strain component. The resulting expressions for the unknown coefficients of
the transverse stress component are related to resultant strains and curvatures defined from kinematic relations. The
equations of equilibrium and boundary conditions of the sandwich plate based on the {3,2}-higher-order theory are
derived by employing the principles of virtual displacements. The robustness and accuracy of this {3,2}-order plate
theory are established through comparisons with exact solutions available in the literature. The finite element imple-
mentation of the present {3,2}-order plate theory is also discussed. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A sandwich construction provides high stiffness and high strength-to-weight ratios. It is typically
composed of a single soft core with relatively stiff face sheets. The upper and lower face sheets interact
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through the core, transmitting transverse normal and shear stresses. The deformation characteristics of
the core and the face sheets are different in nature because of the large differences in stiffness proper-
ties. Transverse shear deformations arise from bending, especially when the core is thick and has a rela-
tively low stiffness. Face sheets undergoing unequal displacements can cause the core to experience
transverse compression. Transverse compression may also arise due to a locally distributed load on the face
sheets.

The first departure from classical plate theory was introduced by Reissner (1944, 1945), who derived his
first-order plate theory for homogeneous isotropic plates in equilibrium using an assumed-stress approach.
Mindlin (1951) extended this theory to the elastodynamic analysis of plates using a displacement-based
first-order theory that also includes rotary inertia effects. Both of these theories take into account the
transverse shear deformations in some weighted-average sense.

Since the pioneering works of Reissner (1944, 1945) and Mindlin (1951), numerous first- and higher-
order plate theories have been proposed. In general, these theories are based on either equivalent single-
layer or discrete-layer assumptions utilizing displacement-based, stress-based, and mixed formulations. In
single-layer theory, the displacement components represent the weighted average through the thickness of
the sandwich panel. Although the layerwise (discrete-layer) theories (Reddy, 1989; Babuska et al., 1992 and
references therein) are more representative of sandwich construction than are single-layer theories, they
suffer from an excessive number of field variables in proportion to the number of layers.

Several higher-order shear deformable theories that assume cubic in-plane displacement components and
a constant distribution for the transverse displacement component have been developed (Librescu et al.,
1987 and references therein). In these theories, the transverse normal stresses are taken into account al-
though no expansion in the transverse direction exists due to the uniform distribution of the transverse
displacement component. The effects of normal straining, in addition to the transverse shear deformations,
were included by Lo et al. (1977) by introducing a {3,2}-order displacement theory for homogeneous and
laminated plates. Later, Reddy (1990) established a correlation between several versions of the {3, 2}-order
theory. A major shortcoming of these theories arises from the inclusion of a large number of plate dis-
placement variables and the complexity of natural boundary conditions.

Tessler (1993) developed a {1,2}-order single-layer theory that eliminates the above-mentioned short-
comings, leading to the determination of complete stress and strain fields with only a few displace-
ment variables. This theory assumes linear expansion of in-plane displacements and a special parabolic
form for the transverse displacement component in the thickness direction. Similarly, Cook and Tessler
(1998) formulated a {3,2} higher-order theory for sandwich beams. Their formulation assumes cubic ex-
pansion for the in-plane displacements; hence, the correct variation of the in-plane stresses and the
transverse shear stresses (from the equilibrium equations) is captured. In both of these formulations, a
cubic variation of the transverse stress field is assumed, thus satisfying the continuity of an interlaminar
transverse stress field, as well as the transverse stress equilibrium equations on the plate’s upper and lower
surfaces.

Based on the investigations presented by Tessler (1993) and Cook and Tessler (1998), the present for-
mulation extends their work to the analysis of sandwich panels by a {3,2}-order plate theory, which is
analogous to the {3, 2}-order beam theory of Cook and Tessler. The development of the {3,2}-order plate
theory and the derivation of the equations of equilibrium and boundary conditions are presented in the
following sections. The present theory is verified using Pagano’s (1970) exact solutions obtained for simply
supported and square sandwich construction subjected to double sinusoidal loading. Sandwich construc-
tions with carbon/epoxy face sheets and a core of PVC or a honeycomb material are considered. The results
show remarkable agreement with the exact solution provided by Pagano for thick sandwich panels with
length-to-thickness ratios equal to four. The applicability of the present formulation to finite element
methods is discussed in the conclusions.
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2. Formulation

The geometric and loading descriptions of a thick sandwich panel are illustrated in Fig. 1. The panel has
an arbitrary planar geometry and a thickness 24. Along the vertical edges, where the vector n is used to
indicate the unit normal of the edge, the sandwich panel is under the action of arbitrary traction forces 7,
T,, and T in the x-, y-, and z-directions, respectively. The upper and lower faces of the panel are subjected
to normal stresses, g (x,y) and ¢~ (x, ), as shown in Fig. 1. The displacements at any point on the panel are
represented by in-plane displacement components, u,(x,y,z) and u,(x, y,z), and the transverse displacement
component, u,(x,y,z). The {3,2}-order plate theory implies that the in-plane displacements vary cubically
and the transverse displacement component quadratically across the thickness (z-direction) of the panel.
Thus, the displacement components of the sandwich panel are defined in the form

ux(x,y,z) = uo(x,y) + ul(x,y)f + uz(x,y)fz + M3(X7y)53 (la)
uy(xayvz) = l)()(X,y) + Ul(xvy)é + UZ(x7y)éz + U3(x7y)£3 (lb)
:(x,y,2) = wo(x, ) + w1 (%, )& + wa(x, 1) (& —§) (Ic)

where ¢ = z/h. The constant —1/5 in the expression for u, appears as a result of Reissner’s (1945) definition
for the weighted average of the transverse displacement component, ..

As proposed by Tessler (1993) the weighted average quantities through the thickness of the panel are
defined as

() oe) = 37 [ (b2 ,0,2)) 0 (22)
(HX(xvy)? Hy(x’y)) = % [/ (uy(xayvz)7 ux(x’y7z))dz (2b)
wiwy) =g [ ey - &)z (29)

Enforcing the definition for weighted-average kinematic variables results in the expressions for u;
and v; (i =2,3) in terms of the weighted-average kinematic variables, u, v, 0,, and 0,, and the unknown

Fig. 1. Geometric description of a flat sandwich panel subjected to arbitrary edge loading and normal stress at the faces.



6066 A. Barut et al. | International Journal of Solids and Structures 38 (2001) 6063-6077

coefficients, u; and v; (i = 0, 1). The remaining unknown coefficients, #; and v; (i = 0, 1) are determined by
imposing zero shear traction conditions on the upper and lower surfaces of the sandwich panel,

sz(xvyv :Fh) = O-,Vz(xvyv :Fh) =0 (3)

Applying these conditions through the constitutive relations leads to the requirement that the shear strain
components vanish,

sz(x’y7 :Fh) - V}z(x,y, :Fh) =0 (4)

Enforcing these conditions results in the determination of the unknown functions, u; and v; (i =0, 1).
After determining the coefficients »; and v; (i = 0, 1,2, 3), the displacements, u, and u,, are expressed in
terms of the average quantities (u, v, 6,,0,) and (wg, wi, w2) as

u(x,p,2) = Py(ulx,y) + Pi(E)0,(x,y) + Po(E)hwio(x,p) + Pi(E) [F(0,(x, ) + wor(x,)) + wau(x, »)]
(5a)
u,(x, 3, 2) = Po(E)o(x,¥) + Pi(E)0:(x,9) + Po(E)hwi,(x, v) + Py(E) [F(0:(x, ) + wop(x,3)) + way (x,1)]
(5b)
in which
1 & ¢ g
P=1, P=hi, P=(-—->), P=h(>2-= 6
0 ) 1 67 2 (6 2 ) ) 3 — (5 3 ( )
differ from the Legendre polynomials only by scaling factors.
2.1. Kinematic representation of strain components
The strain components, expressed in the form
Exxy = Uy x, 8yy = uy,y7 &z = uz,z (73)
V}z = Uy, + Uzy, Vez = Uxz + Uzx, yxy = Uxy + Uyx (7b)
can be rewritten as
Exx = POSxxO + Pl Ky + P28xx1 + P3Kxx1 (83)
&y = P()Syyo + P1 K0 + P23yyl + PSKyyl (Sb)
yxy = POnyO + P] KX,VO + szxyl + P3ny1 (8C)
&z = SZZOPO + 2KZZOP17 (yym 'yxz) = %(l - 52)(’)))207 szO) (8d)
in which the resultant strains and curvatures are defined as
Exx0 = Uy, S0 = Uy, &z0 = Wl/h7 yxyO =Uy + Ux (93')
Exxl = th(xxa 8yyl - hWZ,xxa nyl = 2hwl,xy (9b)
Kxx0 = Gy‘xa Ko = Gx‘y7 K0 = WZ/hza Kyo = gx,x + Hy‘y (90)

Kxxl = %(ey.x + WO,xx) + W2,xx (9d)
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Kyt = 3(0yx + Wouy) + Way (%)
nyl = %(ex,x + Hy,y + 2W0,xy) + 2W2,xy (9f)
yyzO = WO,y + 9)67 sz = WO,X + 0)7 (9g)

2.2. Assumed transverse stress component

Although the transverse strain component, &_., is expressed based on the kinematic relation in terms of
average quantities, it leads to a discontinuous interlaminar transverse normal stress field, ¢.., when obtained
through constitutive relations. This undesirable condition also appears for the transverse shear stresses,
g,. and o,.; however, they can be recovered with reasonable accuracy from the stress equilibrium equations
as

Oxzz = —Oxxx — Oxpy (IOa)

Oyzz = —Oyy — Oxpx (10b)

provided that the derivatives of the in-plane stresses are obtained with high accuracy.
In order to achieve a continuous through-thickness distribution of the transverse normal stress, a cubic
polynomial is assumed for o.. as

O_ZZ(xvy7Z) = zzO(xvy) + ¢0'221(x,y) (11)

where ¢ = ¢ — £/3 and 6.9 and 0., are unknown functions of x and y. This assumption was proposed by
Tessler (1993) and applied successfully by Cook and Tessler (1998) for sandwich beams. Note that ¢., in Eq.
(11) satisfies the exact stress equilibrium equation

Ozzz = —Oxzx — Oyzy (12)
for the case of zero transverse shear stresses on the upper and lower surfaces, leading to
0...(x,y,£h) =0 (13)

This condition states that the slope of the transverse stress o.. at the upper and lower faces of the panel is
zero. Furthermore, three-dimensional elasticity solutions for .. due to mechanical pressure loads closely
resemble a cubic distribution in the thickness direction.

In order to utilize Eq. (11) in the stress—strain relations, a mixed form of constitutive equations is em-
ployed as

J)Ecg Ch Cn Rz 0 0 Cp W e
Oy Ch Cy»n Rz 0 0 Cy &y
el _|-Rs —Rn S3 0 0 —Rg 0. (14)
O'J(,]Zc ) o 0 0 0 Cy Cys 0 Pz
g ﬁ’? 0 0 0 Cis GCs 0 Vxz
alf) Cs Cx Rz 0 0 Ces Vay

where the superscript (k) indicates that the quantities are obtained from the stress—strain relation in the kth
layer, and strain and stress quantities without the superscript on the right-hand side of Eq. (14) are directly
expressed in terms of strain resultants. The components of the material property matrix are defined as

Gy =c —RYCY (i,j=1,2,6) (15a)
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RY = cWs®  with s = (i=1,2,6) (15b)

1
k)
s

The transverse strain in the kth layer can then be expressed as

e = R, — RYe, — RYy + 580, (16)

zz

The unknown functions of the transverse stress component, o,y ando,,;, are determined such that the
transverse strain component ¢ becomes the least-squares equivalent of the kinematic definition of the
transverse strain component (i.e., &, = u..). This is accomplished by minimizing the total error between
¢® and ¢., through the thickness of the panel. The error function is defined as

min [/h(éf) — &) dz] (17)

h

Minimization of Eq. (17) with respect to a..o and o.,; results in the expressions for ¢,y and ¢..; in the form

O oqll e
{eh-la 1 (18)

in which
q={d, & - &} 4={d, @ - &} (@=ex) (19)
and
6T = {gxx07 €105 €220, ”/xyo, Exxly &yl s nyl } (203)
KT = {Kxx(h KyyOa Kzz0, nyOa Kxxls Kyy17 nyl} (20b)

The explicit expressions for ¢, and q’(« = ¢, k) are given in Appendix A.
2.3. Equilibrium equations

The equilibrium equations for the plate are derived based on the principle of virtual work,
U = Mg (21)

in which dU represents the work done by the internal forces over virtual (arbitrary) displacements in the
material and dW; is the work done by the external forces over virtual displacements on the boundaries. For
a sandwich panel subjected to traction forces as shown in Fig. 1, application of the principle of virtual work
leads to

h
/A / h (o§§>68xx + 0136, + 0,369 + cW8y,, + o W5y, + oi?&yxy) dz d4

h
= / (gt 8u.(x,y,h))d4 — / (¢ du,(x,y, — h))dA4 —|—j{ {T}Sux + T,,6u, + TZSuZ} dzd/¢ (22)
A A 14 —h
where A represents the area of the plate’s middle surface. The arc length along the boundary of the panel is
denoted by ¢. Substituting for the displacement and strain components from Egs. (1c), (5), (8a)—(8d), and
(16) and integrating through the thickness in Eq. (22) results in
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/ {N‘CXOSSXXO + NyyO 68yy() + N22068220 + ny() 6%@«0 + Nxxl 88xxl + ]\]yyl 6gyyl + nyl 5“/xy1 + M‘CXOSKXXO
A

+ AlyyOSKyyO + MZZOSKZZO + MxyOSnyO + MXXISKXXI + Al)/yISKyyl + MrylSnyl + Q)ZOSV)/zO + QXZO8’))XZO}dA

4 . . .
= /A {(61+ —q )dwo + (¢ + ¢ )dw; + g(q+ - q)BWz}dA + 7{{@0&1 + M30, + T hdw

N 5 . - . N S
+ Alxl8 |:Z (Hy + W(lx) + W2,x:| + 7}060 + Mv060x + Tvlhswl,y + ]‘4}716 |:Z (Hx + WOWV) + W2,y

+ Qn206wo + Qn218W1 + an26w2} de (23)

The expressions for the load vectors Ty, My, and Q,, (« = x,y;i =0, 1,2) are given in Appendix A. The
resultant stresses, N,s, O)z0, and O..o, and the resultant moments, M, (o, f = x,y;i = 0, 1) are obtained by
integrating the product of appropriate stress components with appropriate functions in terms of &, resulting
in the following constitutive relation:

N A B 0 €
M;=|B" D 0[{xk (24)
Q 0 0 G|~
where
NT = {vi07Nyy07szO7nyO7Ntxl>Nyyl7val} (25&)
M" = {MXX07 MyyO» M., Mxy07 M, 7ny1 s Mxyl } (25b)
QT = {Q)zO? szO} (250)
with € and k defined in Egs. (20a) and (20b) and
A‘T: {Vyz()? yxz()} (26)

The matrices A, D, and B are defined as

Ay A kodiz A Ais Ais Ay
Ay kodn  Axn A»s Az Ay
koAss  keodss  kodss  kodss koA

A= A44 A45 A46 A47 (273)
Ass Asg Asz
Sym. A66 A67
A77

Dy Dy kaDiz Dy D;s Dy Dy,
Dy kaDyy Doy D»s Dy Dy,
k2Dsy kaDss kaDss kaDss  k.aDs

D= Dy Dys Dy Dy (27b)
Dss Dsg Ds;
sym. Dqs De7
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[ B B kB3 By Bis
By By k.1 Bo3 By B»s

B=| Bu By k:1B43 By Bys
Bs Bsy k21 Bs3 Bsy Bss
B B k21 Bg3 Bey Bgs
By By kz1B73 By Bis

and the matrix G has the form

[ k)%ZGll kyzkszIZ

G =
L kyzkxz G12 k)?z G22

koB3s1  koByn  kok:aBsz  koBi o koBss

Bis
B

k-0B36

By

By;
By
k-0B3;
By

(27¢)

(27d)

where k, and k,; denote the transverse correction factors (Cook and Tessler, 1998) and k. and k., are
known as the shear correction factors. The shear correction factors improve the global transverse dis-
placements of the plate. The role of k., and k., is to improve the transverse stretching of the plate. These
correction factors are obtained using the approach described by Cook (1997). The expressions for 4;;, B,
Dy (i,j=1,7), and G;; (i,j = 1,2) are summarized in Appendix A.

Substituting for the resultant strains and curvatures from Egs. (9a)-(9g) and integrating the area inte-
grals of Eq. (12) by parts and applying the Gauss theorem to appropriate terms result in the Euler equations
of equilibrium and boundary conditions for the sandwich panel:

Onacd (a=x,y),

N\'xO,x + nyO,y =0

Nyyoy + Nyyox = 0

&l

(Myyly + MXyl,x) + M»’O-y + MxyOA,x - QyzO =0

&l

%(Mxxl,x + Mxyl,y) + Mxx(),x + MxyO,y - szO =0

NZZ —
ho + h(Nat o + Nty + 2Ng19) — ¢, =0
MZZ —
hzo + (Mxxl,xx + nyl‘)y + 2Mxyl.,xy) - %ql = 0
where
G=9 -9, GH=9 +q

Onoc/ (0=xy),

Nxxonx + ny()ny = Ax() or 61/! = 0

Nyyol/ly + ny()l/lx = 1yp O dv=20

(Mxxl,xx + Myl,)a} + 2ny17xy) - szO,x - QyzO,y - 6?1 =0

sz()nx + Q)zOny - %(M!ocl,xnx + Mxyl,xny) - %(M)yl,yny + Mxyliynx) =

A/[Wony + Mxy()l’lx = Myo or 80)( =0

Q nz0

or

SWO =0

(28a)
(28b)
(28¢)
(28d)

(28e)

(28f)

(28¢)

(28h)

(29a)
(29b)
(29¢)

(29d)
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Myon, + Myon, =M,y or 80,=0 (29¢)
h(Nye iy + Nyt ity + Nyt sty + Ny i) = —anl or ow; =0 (29f)
Neante + Nyan, = Ty or dwy, =0 (29¢)
Nty + Nyine =T, or - 3wy, =0 (29h)
M. oy + My ony + My o0y + Moy i, = —anz or dw, =0 (291)
Mean, +Mgin, =My or 8[3(0, +wo,) +wa.] =0 (29))
Myan, + Moine =M, or  8[3(0, +wo,) +wa] =0 (29k)

3. Simply supported sandwich panel

In order to validate the present plate theory analytically, a simply supported sandwich panel is con-
sidered (Fig. 2). The panel has a square, planar geometry described by a = b = 4k, with 4 = 0.5 in. The face
sheets at the bottom and top of the core are of equal thickness, #; = 0.24; hence, the core thickness, 4, is
80% of the total panel thickness. The panel is subjected to double-sinusoidal external pressure on the top
surface, with magnitude py, as depicted in Fig. 2.

The face sheet material is composed of carbon/epoxy plies, with stacking sequence [0/90], (the bottom-
most layer and the layer on the top have a ply angle of 0° with respect to the x-axis). Each ply has Young’s
moduli of E; = 22.9 x 10° psi and Er = 1.39 x 10° psi, shear moduli of Gyt = 0.864 x 10° psi and Grr =
0.368 x 10° psi, and Poisson’s ratios of vt = 0.32 and vrr = 0.48. In order to investigate the effect of core-
face sheet interaction, two different materials are considered for the core. The first one is made of a soft
PVC material with E, = 15.03 x 103 psi and v, = 0.3, with the face sheet being about 10° times stiffer than
the core in both shear and in-plane stresses. The second core material is made of a titanium honeycomb
material with E; = 62.36 psi, E, = 41.27 psi, E; = 345 x 10 psi, G;» = 1140 psi, G»; = 56.7 x 103 psi,

z
T q'=-p, Sin[nx/(2a)] Sin[ny/(2b)]

S/ 2a
’ B.C’s:

u (x,0,2)=u (x,2b,zy=0

R e S u(0,y,2)=u,(2a,y.2)=0
u(x,0,2)=u,(x,2b,2)=u (0,y.2)=u,(2a,y,z)=0

2b A 6, (0.y.2)=0,,(2a,y,2)=0

x 0,,(x,0.2)=0,,,(x,2b,2)=0

Fig. 2. A simply supported, thick sandwich plate subjected to double sinusoidal pressure on the top face.
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Gi3 =751 x 103 psi, v =1.23, vp3 =5.6 x 107°, and v;3 = 3.7 x 107>, The honeycomb has a higher
transverse stiffness but lower in-plane stiffnesses than PVC.

For this problem, the equilibrium equations, Eqgs. (28a)—(28h), can be integrated by assuming the fol-
lowing displacements and rotations:

o) = Voo (3 in () o
e = (5 eos(3) o
b e, ), i (e, ), wa e, )] = [, W5, W3] sin (3 ) sin (57 ) (30c-¢)
0(x.y) = @ysin (T ) cos (3 ) (30f)
)= aon (55 n (3) o)

where U, V, Wy, Wi, W,, @,, and @, are unknown amplitudes of the displacements and rotations. Note that
Egs. (30a)—(30g) satisfy both displacement and force boundary conditions, as given by Egs. (29a)-(29k). In
order to determine the unknown amplitudes, equilibrium equations, Eqgs. (28a)—(28h), are expressed in
terms of displacement components through substitutions of Egs. (9a)-(9g) into Eq. (24) and Eq. (24) into
Eqgs. (28a)—(28h), resulting in the equations of equilibrium in terms of displacements. Egs. (30a)—(30g) are
incorporated into these displacement equilibrium equations to obtain solutions for the unknown ampli-
tudes. Note that the applicability of the solution form given in Egs. (30a)—(30g) is limited to sandwich
panels with cross-ply lamination configurations. The resulting equations will yield a system of seven
equations for seven unknown amplitudes, with the right-hand side of the equations containing the am-
plitude of the applied load.

The results of the present theory are compared against the exact solutions provided by Pagano (1970) for
bi-directional simply supported sandwich plates. Three critical locations on the plate are selected to
compare the two solutions. The in-plane strains and stresses and the transverse strains, stresses, and dis-
placements are examined at the center (x = a, y = b) of the plate. The transverse shear strain and stress
components, y,, and o,., and the in-plane displacement component, u,, are evaluated at x = 2a and y = b.
Similarly, the transverse shear strain and stress components, y,. and o,.,, and the in-plane displacement
component, u,, are evaluated at x = a and y = 2b. '

Fig. 3 shows a comparison of in-plane and transverse stresses at the center and the transverse shear
stresses at x = 2a, y = b and x = a, y = 2b for a sandwich panel with a PVC core. Also shown in this figure
is a comparison of transverse displacement components at the center of the plate. As shown in Fig. 3a and
b, the results from both the present analysis and the exact solution by Pagano (1970) are in excellent
agreement for in-plane stresses, o,, and o,, (note that g,, = 0 everywhere due to the orthogonal symmetry
of both the geometry and layup of the materials). As mentioned in Section 2.2, the transverse shear stresses
are computed by integrating Egs. (10a) and (10b) through the thickness. The accuracy achieved for the in-
plane stresses gives rise to remarkable agreement of the transverse shear stress computations between the
present analysis and the exact solution. As seen in Figs. 3¢ and 3d, the present {3,2} higher-order plate
theory captures the correct variation of transverse shear stresses both along the core and along the face
sheets.

Comparisons of plots for the transverse stress component, a.,, and transverse displacement, w,, at the
center of the panel are illustrated in Fig. 3e and f, respectively. Favorable agreement between the two
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Fig. 3. Simply supported sandwich panel with PVC core: stress distributions for (a) o, (b) 6,,, (¢) 6., (d) 6,., (¢) o.. and (f) the vertical

deflection, w, at the center of the plate.

solutions is obtained for a plate with a/h = 4 via the computation of appropriate transverse correction

factors, as described by Cook (1997).
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Fig. 4. Simply supported sandwich panel with honeycomb core: stress distributions for (a) .., (b) gy, (¢) 6., (d) g,., (¢) ¢.. and (f) the

vertical deflection, w, at the center of the plate.

In the case of a sandwich panel with a honeycomb core (Fig. 4), it is observed that the present {3,2}
higher-order theory yields almost the same accuracy as in the case of a sandwich panel with a PVC core.
The difference is observed in the responses of these two material systems. Unlike the sandwich panel with
the PVC core, the honeycomb-core panel can take high transverse shear stresses (Fig. 4c and d), thus
causing tension in the lower face sheet and compression in the upper face sheet. In the case of the PVC core,
however, the low transverse shear stiffness of the core causes the face sheets to bend rather than to stretch or

contract (as observed in the case of a honeycomb core).
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4. Remarks on finite element implementation

Although the present {3,2}-order plate theory appears to be robust for analyzing sandwich as well as
thin-to-thick regime laminated composite plates, the applicability of the present theory to the finite element
method presents difficulties in terms of the choice of shape functions. As noticed in the derivation of the
equilibrium equations, the boundary conditions given in Eq. (29) suggest that the derivatives of the element
interpolation functions for transverse displacement fields, wy, w;, and w,, be continuous along the inter-
element boundaries. In other words, these interpolation functions must at least be C! continuous to satisfy
inter-element continuity. Hence, it becomes difficult to find a conformal interpolation function satisfying C!
continuity along the element interfaces. However, past investigations on elements using convergent but
non-conformal shape functions are available. The key to a successful non-conformal shape function is
known as the satisfaction of the “patch-test” or the “individual element test” as presented by Bergan and
Nygard (1984). For example the “Free-Formulation™ technique introduced by Bergan and Nygard and
applied by Bergan and Wang (1984) for shear deformable elements may be a candidate for the finite ele-
ment implementation of the present {3,2}-order plate theory.

5. Conclusions

In this analysis, a higher-order plate theory based on cubic expansion for in-plane displacements and a
special form of quadratic expansion for the out-of-plane displacement component through the thickness is
presented for the analysis of thick sandwich plates. Enforcing Reissner’s definitions of weighted-average
quantities, the number of variables describing the displacements at a point has been reduced from 11 to 7
(i.e., three translations, two out-of-plane rotations, and two higher-order transverse displacement modes
representing the symmetric and anti-symmetric expansions in the transverse direction). The continuity of
transverse stress fields has been achieved through a cubic polynomial that satisfies transverse stress equi-
librium equations on the upper and lower surfaces of the panel. Comparison of the present theory with the
exact solution shows close agreement for all stress components for typical material systems used in
sandwich construction.

Appendix A

The traction forces and moments in Eq. (23) are defined as

h
(EO,MK%Ethl) :/ TXO(P07P17P27P3)dZ

—h
h

(fvﬂ»MvOzj}laﬂ;[yl):/ T0(Py, P1, P>, Ps)dz
—h
I

; o A 1
(anO?anhanz) = /_h TzO(l, é, 52 _ g) dz

The vectors, ¢/, q/, q., and q. in Eq. (18) are obtained from the matrix operation

-1
q q, _|suosne t ot
q q S S» t! t!

where s; (i,j = 1,2) and t, and t] (a = ¢ k) are given as
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K hy 5
[S11,S12,S22] = E / (1, 4’7(152]5(3/? dz;
k=1 7 hi1

and
C={f) and €={0)  (k=1T= o)
in which
£ 5() (6)
= Z hk . (/’p ,z 532 dzy, Z fhk : (ijRj3 533 dzi
k=1 (j = 1,7;n0 summation on j)
p k) (k) (k)
Z ey %;(bRﬁ s33 dz, tj E fhk | (pj,c(f)R,3 $33 Az
with
5k 6 ok 0 o) k) ok
(80} = (R0 RO R R RO, R}
and

{0} ={Po,Ps,1,Py, P, P>, P}, {¢,} ={P.P,1,P,Ps,P; P}

The components of matrices A, B, D, and G in Eq. (27) are obtained as
Z fhk 1 ¢ic¢js + S(Blg)lpislpjs}dzk
Z f:: 1 Alj (pIF(ij + S%B lpzsl///lc}dzk (lvj = 17 7; no summation on i and ])

A k
Z th 1 l] q’ikq)j;c + Sg3)l//ivclrbjx} de

f/h{[ 1—52)]2A,+3]+a}dzk, (i,j=1,2)

in which Ci/- is defined in matrix form as

and

[ Cu lez 0 C:'m C:'n C:'12 les
Cn 0 G Cnn Cn Oy
0 0 0 0 0

] = Cos Cis Crs Cos
sym. Ci Ci Ci

Cn Gy

Cos

and the functions ¢, and ¢, (j = 1,7) are defined in the form

Y, =g, + o4, .
ij = q};c + ¢q;/1c (J N 17 7)

Note that matrices A, D, and G are symmetric whereas matrix B is non-symmetric due to the presence of
coupled product terms.
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